p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m
↳ QTRS
↳ DependencyPairsProof
p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m
P3(m, n, s1(r)) -> P3(m, r, n)
P3(m, s1(n), 0) -> P3(0, n, m)
p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P3(m, n, s1(r)) -> P3(m, r, n)
P3(m, s1(n), 0) -> P3(0, n, m)
p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P3(m, s1(n), 0) -> P3(0, n, m)
Used ordering: Polynomial interpretation [21]:
P3(m, n, s1(r)) -> P3(m, r, n)
POL(0) = 2
POL(P3(x1, x2, x3)) = 2·x1·x2·x3 + 2·x2·x3
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
P3(m, n, s1(r)) -> P3(m, r, n)
p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P3(m, n, s1(r)) -> P3(m, r, n)
POL(P3(x1, x2, x3)) = 2·x2·x3 + 2·x3
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
p3(m, n, s1(r)) -> p3(m, r, n)
p3(m, s1(n), 0) -> p3(0, n, m)
p3(m, 0, 0) -> m